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General Optimization Problem

mglgl f (X), Obijective function
s.t. h(x)=0, Equality constraints
g(x)=0 Inequality constraints

L= f(x)+y h(x)—w g(x)
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Classes of Optimization Problems =)

** Unconstrained optimization

“+ Bound constrained optimization
= Only upper and lower bounds
= Sometimes called “box” constraints
“* General nonlinearly constrained optimization
= Equality and inequality constraints
= Usually nonlinear
“* Some special case classes

= Linear programming (function and constraints linear)

= Quadratic programming (quadratic function, linear
constraints)
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min Y (70T

- s.t. 0<x<u

* Find model parameters,
satisfying some bounds, for
which the simulation
matches the observed
temperature profiles

“ Computing objective
function requires running
thermal analysis code
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“* Objective function

consists of computing
the max temperature
difference over 5 curves

*»» Each simulation requires

approximately 7 hours
on 1 processor

* Uncertainty in both the
measurements and the
model parameters

Time (min)

hexdmum Temperature Difference
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Some working assumptions

“* Objective function is smooth

= Usually true, but simulations can create noisy
behavior

“»» Twice continuously differentiable
= Usually true, but difficult to prove

*» Constraints are linearly independent

= Users can sometimes overspecify or incorrectly
guess constraints

**Small dimensional, but expensive objective
functions
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OPT++ Philosophy =)

** Problem should be defined in terms the user
understands

= Do | have second derivatives available? vs. Is my objective
function twice continuously differentiable?

“ Solution methods should be easily interchangeable

= Once the problem is setup, methods should be easy to
interchange so that the user can compare algorithms

“» Common components of methods should be
iInterchangeable

= Algorithm developers should be able to re-use common
components from other algorithms
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Problem Classes in OPT++ recre .'n‘

“* Four major classes of problems available
= NLFO(ndim, fcn, init_fcn, constraint)
« Basic nonlinear function, no derivative information available
= NLF1(ndim, fcn, init_fcn, constraint)
* Nonlinear function, first derivative information available
= FDNLF1(ndim, fcn, init_fcn, constraint)
* Nonlinear function, first derivative information approximated
= NLF2(ndim, fcn, init_fcn, constraint)

* Nonlinear function, first and second derivative information
available
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Classes of Solvers in OPT++ rreern)
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*» Pattern search
= No derivative information required
*» Conjugate Gradient

= Derivative information may be available but doesn’t use
quadratic information

“* Newton-type methods
= Algorithm attempts to use/approximate quadratic information
= Newton

Finite-Difference Newton

= Quasi-Newton
NIPS
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Quick tour of some of the algorithms
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Pattern search

¢ Can handle noisy
functions

*» Do not require
derivative information

¢ Inherently parallel

*» Convergence can be
painfully slow
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Newton-type Methods )

: — \ — % Fast convergence
' properties

/) 7« Good global

convergence
properties

» Inherently serial

s Difficulties with
noisy functions
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NIPS: Nonlinear Interior Point Solver &
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¢ Interior point method

“+ Based on Newton’s method for a particular system of
equations (perturbed KKT equations, slack variable
form)

% Can handle general nonlinear constraints
“ Can handle strict feasibility

Vi (x)+Vh(x)y —Vg(x)w]
w—z
F(u)= h(x) =0

g(x)—s
/Se — le
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“+ Constraint types
= BoundConstraint(hnumconstraints, lower, upper)
= Linearlnequality(A, rhs, stdFlag)
= NonLinearlnequality(nlprob, rhs, numconstraints, stdFlag)
= LinearEquation(A, rhs)
= NonLinearEquation(nlprob, rhs, numconstraints)
*+ The whole shebang
= CompoundConstraint(constraints)
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Algorithm Choices Depend on Problem
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NLFO FDNLF1 NLF1 NLF2
OptPDS X X X X
OptCG X X X
OptQNewton X X X
OptBCQNewton X X X
OptFDNewton X X X
OptFDNIPS X X X
OptNewton X
OptBCNewton X
OptNIPS X
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Bare bones example: unconstrained
optimization —

void init_rosen(int ndim, ColumnVector& x);
void rosen(int ndim, const ColumnVector& x, double& fx, int& result);

int main() {
int ndim = 2;
FDNLF1 nilp(ndim, rosen, init_rosen);
nlp.initFcn();
OptQNewton objfcn(&nlp);
objfcn.setSearchStrategy(TrustRegion);
objfcn.setMaxFeval(200);
objfcn.setFenTol(1.e-4);
objfcn.optimize();
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Example 2: Constrained optimization

min (x, —x,)” +(1/9)(x, +x, —10)* Hx, —5)°
S.L.

x| +x; +x; <48,

_45<x <45,

_45<x, <45

—-5.0<x,<£5.0
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Constrained optimization (cont.)

int ndim = 3;

ColumnVector lower(ndim), upper(ndim);

lower << -4.5<<-45<<-5.0; upper<<45<<45<<3.0;
Constraint ¢c1 = new BoundConstraint(ndim, lower, upper);
// Nonlinear inequality constraint

NLP* chs65 = new NLP(new NLF2(ndim, 1, ineq, hs65,
init_hs65));

Constraint nlegn = new NonLinearlnequality(chs65);
// Put everything together in one constraint object

CompoundConstraint® constraints = new
compoundConstraint(nlegn, c1);
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Constrained optimization (cont.)

// Put it all together

NLF2 nips(ndim, hs65, init_hs65, constraints);
nips.initFcn();

// Define the optimization object

OptNIPS objfcn(&nips);

/[ Set tolerances and parameters
objfcn.setFcnTol(1.0e-06);
objfcn.setMaxlter(150);
objfcn.setMeritFcn(ArgaezTapia);

objfcn.optimize();
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Parallel Optimization
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Schnabel (1995) Identified Three Levels for
Introducing Parallelism Into Optimization

*» Parallelize evaluation of
function/gradient/constraints
= May or may not be easy to implement

*»Parallelize linear algebra

= Really only useful if the optimization
problem is large-scale

*» Parallelize optimization algorithm at a
high level

= Multiple function evaluations in parallel

A
I
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Trust Region with PDS

*» Fast convergence
properties of Newton
method

»» Good global
convergence properties
of trust region approach

¢ Inherent parallelism of
PDS

S * Ability to handle noisy

functions
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Comparison of TRPDS with other o §
approaches \
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Summary - |

% OPT++ can handle many types of nonlinear
optimization problems

** The toolkit can be used to compare the effectiveness
of several algorithms on the same problem easily

“* The user needs to provide only functions for the
objective function and the constraints

= |f additional information is available it can be easily
Incorporated

*+» The code is open source and available at either
= http://www.nersc.qov/~meza/projects/opt++
= http://csmr.ca.sandia.gov/opt++
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